高考数学函数解题技巧1 (一)把握数形结合的特征和方法 函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性 周期性等基本属性,体现了数形结合的特下面是小编为大家整理的高考数学函数解题技巧,菁选2篇,供大家参考。
高考数学函数解题技巧1
(一)把握数形结合的特征和方法
函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性
周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察
图形、绘制图形,又要熟练地掌握函数图象的*移变换、对称变换.
(二)认识函数思想的实质,强化应用意识
函数思想的实质就是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系,求得问题的解决.纵观近
几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识.
(三)准确、深刻理解函数的有关概念
概念是数学的基础,而函数是数学中最主要的概念之一,函数概念贯穿在中学代数的始终.数、式、方程、函数、
排列组合、数列极限等是以函数为中心的代数.近十年来,高考试题中始终贯穿着函数及其性质这条主线.
四)揭示并认识函数与其他数学知识的内在联系.函数是研究变量及相互联系的`数学概念,是变量数学的基础,利
用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容.在利用函数和方程的思想进行思
维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式.
所谓函数观点,实质是将问题放到动态背景上去加以考虑.高考试题涉及5个方面:
(1)原始意义上的函数问题;
(2)方程、不等式作为函数性质解决;
(3)数列作为特殊的函数成为高考热点;
(4)辅助函数法;
(5)集合与映射,
高考数学函数解题技巧2
(1)用定义求
(2)代入法(对连续函数,可用因式分解或有理化消除零因子)
(3)变量替换法
(4)两个重要极限法
(5)用夹逼定理和单调有界定理求
(6)等价无穷小量替换法
(7)洛必达法则与Taylor级数法
(8)其他(微积分性质,数列与级数的性质)
推荐访问:解题 函数 高考数学 高考数学函数解题技巧 菁选2篇 高考数学函数解题技巧1 高考数学函数解题技巧100道 高考数学函数解题技巧100题 高考数学函数解题技巧1-3